
Problem QA

Counterfeit Money
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

The banknotes of the ICPC Kingdom have anti-counterfeiting measures. Each banknote has an

exclusive serial number, and this serial number is divisible by 13. In other words, if the serial

number is not divisible by 13, then the banknote is counterfeit. To verify whether a number is

divisible by 13, we can directly divide the number by 13. Yet, there is another method:

Partition the digits of the given decimal number into groups starting from the right, where

each group has three digits. Now, treat each group as a three-digit number. Then, from

the rightmost group, apply subtraction and addition operations alternately to the three-digit

number and obtain the result. If the result is divisible by 13, then the original number is

divisible by 13. Otherwise, it is not.

For example, for the number 123,456,789, if we apply subtraction and addition operations

alternately from the rightmost group of 3 digits, we get 789− 456 + 123 = 456. As 456 is not

divisible by 13, the original number 123,456,789 is not divisible by 13.

For another example, for the number 593,825,856, if we apply subtraction and addition opera-

tions alternately from the rightmost group of 3 digits, we get 856 − 825 + 593 = 624. As 624

is divisible by 13 (624 = 13× 48), the original number 593,825,856 is divisible by 13.

Based on the above method, write a program to verify whether a banknote is counterfeit or

not.

Input Format

The input contains several test cases. The first line stands for the number of test cases 𝑡. The

next 𝑡 lines will each contain a positive number. The given number may contain up to 1000

digits.

Output Format

For each input number, output the absolute value of the result when we apply the above

alternate-add-subtract method. Then, on the same line, output “YES” if the input number is

divisible by 13, and “NO” otherwise. There is a space between the output value and YES/NO.

1

Technical Specification

� 1 ≤ 𝑡 ≤ 1000.

� Each input number may contain up to 1000 digits.

Sample Input 1

2

123456789

593825856

Sample Output 1

456 NO

624 YES

Hint

� string and simulation

� Partition the given number into sets starting from the right, each group has three digits.

We have the following two methods:

– From the rightmost group of 3 digits apply the subtraction and addition operations

alternatively and find the result. If the result is either a 0 or it can be divisible

by 13 completely without leaving a remainder, then the number is divisible by 13

(simulate the statement of problem).

– Numbered the group from the right. Let 𝑆𝑜𝑑𝑑 is the sum of groups with numbered

odd, and 𝑆𝑒𝑣𝑒𝑛 is the sum of groups with numbered even. If |𝑆𝑜𝑑𝑑 − 𝑆𝑒𝑣𝑒𝑛| is either
a 0 or it can be divisible by 13 completely without leaving a remainder, then the

number is divisible by 13.

2

Problem QB

Recurring Decimal to Fractions
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

Given two strings of numbers representing a fraction smaller than one in recurring decimal form.

The first string 𝑠1 indicates the non-repeating part after the decimal point of the recurring

decimal and the second string 𝑠2 indicates the repeating part of the recurring decimal such as

1

012

means0.1012

Return two integers 𝑛, 𝑑 represent the fraction in the form of numerator and denominator. The

two integers should be relatively prime.

Input Format

The first line contains an integer 𝑇 (≤ 40), representing the number of test cases. Each test case

below contains two lines. For each test case, the first line has two integers 𝑎 and 𝑏 separated

by a space. The second line is a string 𝑠1 with length 𝑎 and the third line is a string 𝑠2 with

length 𝑏.

Output Format

Each test case outputs two integers 𝑛 and 𝑑, separated by a space. The first integer 𝑛 is the

numerator and the second integer 𝑑 is the denominator. It is necessary to simplify the fraction

so that the numerator and denominator are relatively prime.

Technical Specification

� 1 ≤ 𝑎

� 1 ≤ 𝑏

� 1 ≤ 𝑎+ 𝑏 ≤ 10

3

Sample Input 1

2

1 3

0

012

3 1

085

3

Sample Output 1

2 1665

32 375

Hint

� Euclidean algorithm

4

Problem QC

Where the Lantern Lights are Dimming
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

The Lantern Festival features many lanterns on display. In the darkness of the night, they cast

beautiful shadows and reflections, attracting numerous visitors to come and go. With so many

lanterns on display simultaneously, it’s impossible to showcase the unique features of each. As

such, the organizers switch on the lights of some lanterns while turning off others in rotation.

At any given time, some lanterns are illuminated while others rest. Additionally, some lanterns

remain perpetually off due to malfunctions, missing their chance to dazzle.

To engage the visitors in the Lantern Festival, the organizers also hold a scoring event. If a

visitor is very satisfied with the festival, they will receive a pack of stickers worth 3 points

each, and they will affix one 3-point sticker to each lantern on display. If they feel satisfied,

they will receive a pack of 1-point stickers and place one on each displaying lantern. If they are

disappointed with the festival, they will get a pack of -2 point stickers and apply one to each

displaying lantern. In other words, those lanterns that are resting and not illuminated won’t

have an opportunity to receive any stickers from this visitor. After the festival ends, please

help write a program to calculate the total points from all the stickers on the lanterns.

Input Format

The input begins with a line containing two integers, 𝑛 and 𝑚. The next 𝑛 lines describe the

initial state of 𝑛 lanterns, numbered from 0 to 𝑛− 1. Each of these lines contains two integers:

𝑠𝑖 and 𝑝𝑖. 𝑠𝑖 represents the state of the lantern:

� 1 if the 𝑖-th lantern is initially on,

� 0 if it is off,

� -1 if it is out of order (meaning it is perpetually off and cannot be turned on)

𝑝𝑖 indicates the total points from stickers that are already on the 𝑖-th lantern.

The following 𝑚 lines represent 𝑚 events given in chronological order, each corresponding to

one of two even types: switching or scoring.

� Lines beginning with the letter W signify a switching event. They have two subsequent

integers, 𝑙𝑗 and 𝑟𝑗, which imply that the state of lanterns numbered in the range [𝑙𝑗, 𝑟𝑗]

(inclusive) will be toggled.

5

� Lines beginning with the letter C denote a scoring event by a visitor. These lines have

a single subsequent integer, 𝑞𝑗 ∈ {−2, 1, 3}, indicating the sticker score assigned by the

visitor. Every lantern currently on display receives a sticker with 𝑞𝑗 points from the

visitor.

Output Format

Output a single integer that is the total points from all the lanterns after the festival.

Technical Specification

� 1 ≤ 𝑛 ≤ 1, 000, 000

� 1 ≤ 𝑚 ≤ 1, 000, 000

� 𝑠𝑖 ∈ {−1, 0, 1}

� −10, 000 ≤ 𝑝𝑖 ≤ 10, 000

� 0 ≤ 𝑙𝑗 ≤ 𝑟𝑗 < 𝑛

� 𝑞𝑗 ∈ {−2, 1, 3}

Sample Input 1

3 3

0 0

0 0

0 0

W 0 2

W 1 1

C 3

Sample Output 1

6

Sample Input 2

5 5

1 5

0 0

-1 2

1 0

0 -2

C 1

W 0 4

C -2

W 1 3

C 3

Sample Output 2

9

6

Hint

� Maintaining an integer 𝑦 that is the total points. Initially, 𝑦 =
∑︀

𝑝𝑖.

� Skip all the out-of-order lanterns and build an array 𝐴 for normal lanterns only.

� Maintaining an integer 𝑥 that represents the number of displaying lanterns.

� In each scoring event, 𝑦 is increased by 𝑞𝑗 × 𝑥

� The states of the 𝑛 lanterns are maintained in a segment tree with lazy propogation for

state flipping.

� For a given input range [𝑙𝑗, 𝑟𝑗], find the exact [𝑙′𝑗, 𝑟
′
𝑗] indexes from 𝐴 by using binary search

to skip the out-of-order lanterns. Then, perform a range update within the new range.

The complexity of each scoring event is 𝑂(1), and the complexity of each switching event is

𝑂(log 𝑛). The overall complexity is 𝑂(𝑚 log 𝑛).

7

Almost blank page

8

Problem QD

Quarantine Policy
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

The 2019 novel coronavirus, COVID-19, can be transmitted between humans through water

droplets and close contact. The transmission is especially easy and fast in relatively crowded

or confined spaces, such as airplanes or trains. If someone is infected with COVID-19, then

passengers occupying the adjacent seats will be infected easily.

To prevent the spread of the virus, we can take precautions, such as washing hands regularly

and avoiding touching our eyes, nose, or mouth, to avoid infection. In addition, governments

have also implemented special measures such as isolation and quarantine for this purpose. For

instance, when someone on an airplane caught the coronavirus, the person will need to be

isolated. Moreover, persons occupying the seats adjacent to the infected person will need to

be quarantined. Precisely, there are two types of adjacent seats. One is directly adjacent, that

is the seat is in the front, rear, left, or right of the virus seat. The other one is diagonally

adjacent, that is the seat is in the front-left, front-right, rear-left, or rear-right of the virus seat.

In the quarantine policy, someone whose seat is directly adjacent will be quarantined for 𝑑1

days, and someone whose seat is diagonally adjacent will be quarantined for 𝑑2 days. If there

is more than one infected person adjacent to some seat, the number of days of quarantine will

not be accumulated.

Please write a program to output which seats whose occupying persons need to be quarantined,

and the number of days of quarantine. If a seat whose occupying person needs to be quarantined

for different days, output the maximum of such days.

Input Format

The input contains several test cases. The first line stands for the number of test cases 𝑡. For

each test case, the first line contains four integers 𝑛,𝑚, 𝑑1, 𝑑2 (0 < 𝑛,𝑚 ≤ 100, 1 ≤ 𝑑2 ≤ 𝑑1 <

10), which stands for that there are 𝑛 lines and 𝑚 columns of the airplane, and a seat will be

quarantined 𝑑1 days if the seat is adjacent to the virus seat directly (i.e., front, rear, left, right),

and a seat will be quarantined 𝑑2 days if it is adjacent to the virus seat in the diagonal directions

(front-left, front-right, rear-left, rear-right). The next 𝑛 lines contain exactly 𝑚 characters and

represent the seats on the airplane.

Each healthy seat is represented by a ‘.’ character and each virus seat is represented by a ‘V’

character.

9

Output Format

For each airplane, first print the following message in a line alone:

Airplane #𝑧:

where 𝑧 stands for the label of the airplane (starting with 1). The next 𝑛 lines replace each

‘.’ character in the input seats by the corresponding number of days to quarantine for that

seat.

Technical Specification

� 1 ≤ 𝑡 ≤ 1000.

� 0 < 𝑛,𝑚 ≤ 100.

� 1 ≤ 𝑑2 ≤ 𝑑1 < 10.

Sample Input 1

2

4 4 7 3

.V..

....

..V.

....

2 2 1 1

V.

..

Sample Output 1

Airplane #1:

7V70

3773

07V7

0373

Airplane #2:

V1

11

Hint

� simulation

� Similar as UVA10189 (Minesweeper): counts the total mines adjacent to a square.

� The differences are (1)There are two types of adjacent seats: adjacent directly and diag-

onal direction. (2) If there is more than one confirmed case adjacent to someone on the

same flight, the number of days of quarantine will not be accumulated.

10

Problem QE

Slabstones Rearrangement
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

Babara has a garden. She has bought some rectangular slabstones and worked out an initial

placement of all slabstones in the garden. The shape of the garden is rectangular. An edge

of a slabstone should be either parallel or orthogonal to an edge of the garden. There exists a

slabstone touching the left, right, bottom, and top edges of the garden, respectively. All the

slabstones are contained in the garden. Meanwhile, none of the slabstones overlap in the initial

placement. Babara enjoys stepping slabstones from one to another every day. However, Babara

would like to redesign her garden to make room for some other purposes. She is wondering how

tight the slabstones can be packed together if they can only be shifted horizontally (i.e., left

or right) without changing their vertical coordinates. Furthermore, if the vertical dimensions

of any two slabstones overlap (not including touching of their ends), their relative locations in

the horizontal direction should be maintained. That is, if the vertical dimensions of slabstones

R and Q overlap and, before shifting, slabstone Q is on the right of slabstone R, Q should be

still on the right of R after shifting or vice versa. Besides, there is a minimal horizontal spacing

between two slabstones during slabstone rearrangement if their vertical dimensions overlap.

The slabstones should remain non-overlapping after shifting. Nevertheless, their horizontal

edges may touch. Now you are asked to help Babara calculate the largest area that can be

spared for other purposes.

Input Format

The first line holds an integer specifying the number of test cases. It is then followed by the

input data of the test cases. The first line of the input for each test case gives two integers.

The first one specifies the number of rectangular slabstones whereas the second one gives the

minimal horizontal spacing between two slabstones. Then, each of the following lines contains

four integers. The first two integers specify the initial x and y coordinates of the bottom-left

corner of a slabstone in the garden. The remaining two integers specify the initial x and y

coordinates of the top-right corner of a slabstone. Two adjacent numbers are separated by a

whitespace.

Output Format

The output of a test case takes a line. It contains the largest area saved by shifting the

slabstones. If no area can be saved, just output zero.

11

Technical Specification

� The number of test cases is not more than 32.

� All the coordinates are 32-bit unsigned integers.

� A garden’s area is not larger than the maximal 32-bit unsigned integer.

� The width and length of a slabstone are 32-bit unsigned integers. They should be larger

than zero.

� The minimal horizontal spacing between any two slabstones is a 32-bit unsigned integer

and should be greater than zero.

� The number of slabstones is from 4 to 100.

Sample Input 1

2

4 2

2 6 4 12

8 4 16 8

7 10 11 16

18 4 20 18

6 4

2 5 4 11

2 14 6 17

7 10 10 16

9 4 16 7

11 11 16 14

18 4 20 18

Sample Output 1

28

0

Hint

� Longest path on DAC for geometric objects

� The relative horizontal positions of rectangles (i.e., slabstones) need to be converted into

a directed acyclic graph where a rectangle is treated as a vertex and the overlapping of

two rectangle’s vertical dimensions has to be modeled as an edge. Hence, a directed edge

from rectangle X to rectangle Y means that rectangle X is positioned relaively to the

left of rectangle Y and their vertical dimensions overlap. Associated with each vertex is

the width of the underlying rectangle whereas associated with each edge is the minimal

spacing between two rectangles. Once an drected acyclic graph is ready, a longest path

algorithm can be aplied to find out the required X dimension of a garden. As a result,

we can obtain the largest area that can be saved.

12

Problem QF

Baker’s Dilemma
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

A baker has 𝑁 bakery orders from customers that he must fulfill, but he can only handle one

order a day. For the 𝑖𝑡ℎ order, the baker needs to spend 𝐷𝑖 (1 ≤ 𝐷𝑖 ≤ 1000) consecutive days

to complete it; however, for every day of delay, the baker must be fined 𝑆𝑖 (1 ≤ 𝑆𝑖 ≤ 10000).

For example, if the baker receives four orders to make biscuits, the number of days required

for each order is 3, 1, 2, 5, and the penalty for each day of delay is 4, 1000, 2, 5. If the baker’s

work order is 1 2 3 4, the penalty will be 4×0+1000×3+2×4+5×6 = 3038, but if the work

order is 2 1 3 4, the penalty will be 1000×0+4×1+2×4+5×6. 0+4×1+2×4+5×6 = 42,

so the latter penalty is less. Please write a program to help the baker to find out the sequence

of work which has the least penalty.

Input Format

The first line of the input has a positive integer 𝑇 representing the number of groups of data.

Then, there are 𝑇 groups of data. For each group, the first line has an integer 𝑁 between 1 and

1000 representing the number of orders, followed by 𝑁 lines, each with two integers separated

by a space character, representing the number of days required for each order, 𝐷, and the

penalty, 𝑆, for each day of delay, in that order.

Output Format

For each set of data, output the sequence of jobs with the smallest penalty on one line. Each

job is represented by its number, separated by a blank character. If there is more than one set

of answers, print the one with the smallest dictionary order. Note that each group of jobs is

numbered starting with 1.

Technical Specification

� 1 ≤ 𝑇 ≤ 1000.

� 1 ≤ 𝑁 ≤ 1000.

� 1 ≤ 𝐷𝑖 ≤ 1000,∀1 ≤ 𝑖 ≤ 𝑁 .

� 1 ≤ 𝑆𝑖 ≤ 10000,∀1 ≤ 𝑖 ≤ 𝑁 .

13

Sample Input 1

2

4

3 4

1 1000

2 2

5 5

5

3 4

1 1000

8 8

2 2

5 6

Sample Output 1

2 1 3 4

2 1 5 3 4

Hint

First, we assume that, in a group, all orders are received at the same time (say time 0). The

different permutation will have different penalty. We can sort these orders according to the

product of finished time and penalty, that is, employing greedy policy.

14

Problem QG

Obtuse Triangle
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

Given three integers 𝑎 ≥ 𝑏 ≥ 𝑐 representing the three edges length of a triangle. If the square

of one edge length is larger than the sum of the other two squares of edge length, 𝑎2 > 𝑏2 + 𝑐2

then return 1. Otherwise, return 0.

Input Format

The first line contains an integer 𝑇 (≤ 40), representing the number of test cases. Each test case

below contains contains three lines. For each test case, there are three integers 𝑎 𝑏 𝑐 separated

by a space.

Output Format

Each test case outputs one integer 𝑠. 𝑠 = 1 means the test case is an Obtuse Triangle. 𝑠 = 0

means the test case is not an Obtuse Triangle.

Technical Specification

� 1000 ≥ 𝑎 ≥ 𝑏 ≥ 𝑐 ≥ 1.

� 𝑏+ 𝑐 > 𝑎

Sample Input 1

3

1 1 1

3 2 2

298 234 157

Sample Output 1

0

1

1

Sample Input 2

2

5 4 3

30 23 20

Sample Output 2

0

0

Hint

� basic calculation

15

Almost blank page

16

Problem QH

Mysterious Triangles
Time limit: 8 seconds

Memory limit: 1024 megabytes

Problem Description

Dr. H is the chief technology officer of the International Collaboration Probing Company. He is

also a well-mathematician and archaeologist. He followed the expedition deep into central Iran

and found suspected Persian cultural relics in caves. We know that ancient Persian mathematics

was very well developed. In the cave, Dr. H discovered some mysterious triangles, which were

inscribed on the walls of the cave in order from small to large as shown in Fig. 1. Based on Dr.

H’s mathematical background, he reasoned and found that the composition of these mysterious

triangles has a special regularity. If we call the top row the zeroth row, followed by the first row,

the second row, and so on, then the 𝑘th row of a 𝑛-dimensional mysterious triangle contains

the following 𝑘 + 1 numbers: 𝐶(𝑘, 0), 𝐶(𝑘, 1), 𝐶(𝑘, 2),. . . ,𝐶(𝑘, 𝑘), where 𝐶(𝑘, 𝑟) = 𝑘!
𝑟!(𝑘−𝑟)!

for

0 ≤ 𝑟 ≤ 𝑘. Since 𝐶(𝑘, 0) = 𝐶(𝑘, 𝑘) = 1, the left and right ends of each row must be 1. Moreover,

if we define that 𝐶(𝑘, 𝑟) = 0 when 𝑟 < 0 or 𝑟 > 𝑘, then every number in this mysterious triangle

except the 1 in the zeroth column satisfies the following recursive relationship:

𝐶(𝑘, 𝑟) = 𝐶(𝑘 − 1, 𝑟 − 1) + 𝐶(𝑘 − 1, 𝑟)

In order to discover more secrets in this cave, given a non-negative integer 𝑘, Dr. H wants to

know how many even numbers are contained from the 0th row to the 𝑘th row of an 𝑛-dimensional

mysterious triangle. For example, given 𝑘 = 4 in the 5-dimensional mysterious triangle, the

number of all even integers from the 0th row to the 4th row equals 4, because there is an even

integer 2 in the second row, and even integers 4, 6, 4 in the fourth row. Given a non-negative

integer 𝑛 and 𝑘, your task is to write a computer program to calculate the number of even

integers contained from the 0th row to the 𝑘th row of an 𝑛-dimensional mysterious triangle.

Note that if 𝑘 > 𝑛, the output is the number of even integers contained from the 0th row to

the 𝑛th row of an 𝑛-dimensional mysterious triangle. On the other hand, if the result is larger

than or equal to 109 + 7, you should output the value modulo 109 + 7, that is, the remainder

obtained using the actual value divided by 109 + 7.

Input Format

The first line of the input file contains an integer 𝐿 (𝐿 ≤ 20) that indicates the number of

test cases as follows. For each test case, the first line contains two integers (separated by

whitespaces) representing 𝑛 and 𝑘, respectively.

17

Figure 1: 5-Dimensional mysterious triangle

Output Format

The output contains one line for each test case. Each line contains one non-negative integer

representing the sum of all the odd numbers contained in the 𝑘th row of an 𝑛-dimensional

mysterious triangle. Note that if the result is larger than or equal to 109+7, you should output

the value modulo 109 + 7, that is, the remainder obtained using the actual value divided by

109 + 7.

Technical Specification

� 𝐿 ≤ 20.

� 1 ≤ 𝑛 ≤ 108.

� 0 ≤ 𝑘 ≤ 108 for each test case.

Sample Input 1

1

5 4

Sample Output 1

4

Hint

The zeroth column of Pascal’s triangle has an odd number, the first column and the second

column each have two odd numbers, and the third column has four odd numbers; if we look down

from the top of the triangle row by row, the odd numbers are 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, ..., they

are all integer powers of 2; and the even numbers are 0, 0, 1, 0, 3, 2, 3, 0, 7, 6, 7, The 𝑘th row

of Pascal’s triangle contains the following 𝑘 + 1 numbers:𝐶(𝑘, 0), 𝐶(𝑘, 1), 𝐶(𝑘, 2), . . . , 𝐶(𝑘, 𝑟),

where 𝐶(𝑘, 𝑟) = 𝑘!
𝑟!(𝑘−𝑟)!

, where 0 ≤ 𝑟 ≤ 𝑘. Since 𝐶(𝑘, 0) = 𝐶(𝑘, 𝑘) = 1, the left and right

ends of each row must be 1. The following result is a key point: When 𝑘 is even and 𝑟 is odd,

𝐶(𝑘, 𝑟) must be even. When 𝑘 is odd or 𝑟 is even, 𝐶(𝑘, 𝑟) is even if and only if 𝐶(⌊𝑘
2
⌋, ⌊ 𝑟

2
⌋) is

even. Therefore, one can use the above result to come out a recursive algorithm for solving the

18

problem.

19

Almost blank page

20

Problem QI

Statistics
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

The result of an objective questionnaire is made up of characters ‘Y’ and ‘N’, e.g. “YYNNYN-

NYYY” represents the result of 10 questions, with the result of each question being represented

by one character. The result of each question is represented by a character. A ‘Y’ indicates that

the answer to the question is agree, while an ‘N’ indicates that the answer is disagree. Since the

questions in the questionnaire are specially designed, the score for each correct answer is the sum

of the number of questions with which it agrees and the previous ones in a row, e.g., the score

for the 10𝑡ℎ question is 3 because it agrees with the previous two questions in a row (totaling 3

questions). Therefore, the score for “YYNNYNNYYY” is 10 (= 1+2+0+0+1+0+0+1+2+3).

Write a program to calculate the score of the questionnaire result.

Input Format

The first line of the input is an integer 𝑇 , which means there are 𝑇 questionnaire results. This

is followed by 𝑇 strings of ‘Y’ and ‘N’, each of which has a length greater than 0 and less than

80, indicating the result of each questionnaire. The input guarantees that there are no blank

characters between ‘Y’ and ‘N’.

Output Format

For each questionnaire result, print its score on one line.

Technical Specification

� 0 ≤ 𝑇 ≤ 100.

Sample Input 1

5

YYNNYNNYYY

YYNNYYNNYY

YNYNYNYNYNYNYN

YYYYYYYYYY

YYYYNYYYYNYYYYN

Sample Output 1

10

9

7

55

30

21

Hint

Read a line of string at a time, each character for a problem. For each problem, by definition,

count the score. Finally, output the total of all the problem scores.

22

Problem QJ

Lead Time Estimation
Time limit: 1 second

Memory limit: 1024 megabytes

Problem Description

The lead time is critical for earning orders, and several issues would result in various lead times

when preparing the products. For example, the processes switched between different working

areas and the workload of each process. The production manager should accurately estimate

the lead time for the target products when the order inquiry is received. Please develop a

program to help the product manager estimate the lead time.

The lead time of an inquiry stands for the production time, including several jobs such as

material preparation, manufacturing, quality checking, shipping, etc. The processing time of

each position could be determined by an execution time while transferring the process from

one job to the next requires a transmission time. For an inquiry, the production manager has

three pieces of information about the target products.

� The number of jobs and transmissions, e.g. |𝑇 𝑗| and |𝑇 𝑡|,

� the processing time of each job, where 𝑇 𝑗 = {𝑡𝑗0, 𝑡
𝑗
1, 𝑡

𝑗
2, . . . , 𝑡

𝑗
|𝑇 𝑗 |−1

}, and

� the transmission time between jobs, where 𝑇 𝑡 = {𝑡𝑡0, 𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡|𝑇 𝑡|−1}.

The process may begin or end with several starting jobs. This situation could easily insert

virtual starting and finishing jobs to simplify the problem. We can assume that the inquiry

processes include one starting job and one finishing job.

Input Format

The input includes three parts: (1) the number of jobs and transmissions in the first row, (2)

the job processing time in the second row, and (3) the transmission time in the remaining

rows. The first input row consists of |𝑇 𝑗| and |𝑇 𝑡| with a space for the separation. The second

input row should be 𝑇 𝑗, and the comma separates each element in 𝑇 𝑗. The transmission time

information is revealed from row number three to (2 + |𝑇 𝑡|). Each row of transmission time

information involves three data: the source job, the destination job, and the transmission time.

Moreover, the test cases have some restrictions.

� There may be one transmission time for any pair of jobs at most.

� There may be multiple cases in a file.

23

Output Format

The total time of delivering the products that is denoted by 𝑧 should be provided, and that

means all jobs should be done in 𝑧. Also, the production manager is interested in the manu-

facturing process. If there is exactly one processing path that dominates the lead time, please

output the job sequence of the processing path and the letter “M” in upper case otherwise. A

comma separates each element in the output sequence. In other words, the output sequence

should be like either “𝑧,𝑣1,𝑣2,. . . ” or “𝑧,M”, where 𝑣1 and 𝑣2 represent the jobs.

Technical Specification

Each inquiry includes precisely one entry and one exit. In each inquiry, at least one path will

dominate the lead time, indicating no cyclical manufacturing processes. The boundaries of each

variable are listed as follows.

� 2 ≤ |𝑇 𝑗| ≤ 50.

� 1 ≤ |𝑇 𝑡| ≤ 100.

� 1 ≤ 𝑡𝑗𝑥, 𝑡
𝑡
𝑦 ≤ 50.

24

Sample Input 1

8 11

2,7,2,6,5,1,2,7

6 7 2

0 1 4

0 2 2

1 3 6

1 4 5

1 5 3

2 4 1

3 6 2

3 7 9

4 5 2

5 7 2

Sample Output 1

41,0,1,3,7

Sample Input 2

6 7

10,8,9,10,11,12

0 1 1

1 2 2

1 3 3

1 4 4

2 5 5

3 5 6

4 5 7

6 7

10,8,9,11,11,12

0 1 1

1 2 2

1 3 4

1 4 4

2 5 5

3 5 7

4 5 7

Sample Output 2

53,0,1,4,5

53,M

Hint

� The lead time of first case is 53. There is only one processing path that dominates the

lead time, e.g 0 → 1 → 4 → 5, so the program outputs the sequence “53,0,1,4,5”.

25

� The lead time of second case is also 53, but there are two dominated processing paths:

0 → 1 → 3 → 5 and 0 → 1 → 4 → 5. Therefore, the output sequence is “53,M”.

26

Problem QK

Chemical Storage
Time limit: 1 second

Memory limit: 1024 megabytes

Problem Description

International Chemical Producing Company (ICPC) is an international company that

manufactures various chemicals. The company built several chemical rooms for storing chemi-

cals. They made a short railroad to connect two chemical rooms for convenience to move the

chemicals. The network of the chemical rooms and the railroads form a special tree graph in

which all the nodes are within distance 2 of a central path. We label each node a number

sequentially from 1. Fig. 2 gives an example of networks.

Figure 2: An example of networks with chemical rooms and railroads.

Each chemical product will be stored in a tank placed in a chemical room. Since the chemicals

may leak into the air, the safety rule is that the chemicals cannot be placed in two adjacent

rooms to avoid adverse chemical reactions between the chemicals. Fig. 3 gives two chemical

placement network examples: (a) is safety, and (b) is unsafety.

Figure 3: Two examples of chemical placement networks: (a) safety and (b) unsafety.

27

Sometimes, the workers must clean the tanks and move some chemicals to the other chemical

rooms. Peter is the worker, and his manager will assign him a task with two safety placement

networks: the source network 𝑇𝑠 and the destination network 𝑇𝑑. A task is called 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

if a possible strategy exists to move the chemicals from 𝑇𝑠 to 𝑇𝑑 following the safety rules;

otherwise, it is called 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒. Notice that we do not restrict chemicals to be placed in a

specific room. If 𝑇𝑠 and 𝑇𝑑 are the same, the task is also treated as feasible. Fig. 4 and Fig. 5

show examples of feasible and infeasible tasks, respectively.

Figure 4: A feasible task: (a) the source network, (b) move the chemical from 4 to 5, (c) move
the chemical from 1 to 2, (d) move the chemical from 2 to 3, (e) move the chemical from 5 to
4 to the destination network.

Figure 5: An infeasible task: (a) the source network, (b) the destination network.

Please write a program to help Peter judge whether a task is feasible or not.

28

Input Format

The first line contains exactly one integer 𝑡, which represents the number of test cases. Each

test case below contains four lines. For each test case, the first line contains two integers 𝑛

and 𝑚, where 𝑛 represents the number of chemical rooms and 𝑚 represents the number of

chemicals; the second line contains 𝑛 − 1 integers 𝑟1, 𝑟2, · · · 𝑟𝑛−1, which represents that room

𝑖+ 1 has a railroad connecting to room 𝑟𝑖 for 1 ≤ 𝑖 ≤ 𝑛− 1; the third line contains 𝑚 integers

𝑠𝑗 for 1 ≤ 𝑗 ≤ 𝑚, representing the room numbers in which chemicals are placed at the source

network; and the fourth line contains 𝑚 integers 𝑑𝑘 for 1 ≤ 𝑘 ≤ 𝑚, representing the room

numbers in which chemicals are placed at the destination network.

Output Format

Each test case outputs 1 if the task is feasible, otherwise outputs 0 in a line.

Technical Specification

� 5 ≤ 𝑡 ≤ 10.

� 1 ≤ 𝑚 ≤ 𝑛 ≤ 10, 000.

� 1 ≤ 𝑟𝑖 < 𝑖+ 1, 1 ≤ 𝑖 ≤ 𝑛− 1.

� 1 ≤ 𝑠𝑗 ≤ 𝑛 and 𝑠𝑝 ̸= 𝑠𝑞 if 𝑝 ̸= 𝑞, 1 ≤ 𝑑𝑗 ≤ 𝑛 and 𝑑𝑝 ̸= 𝑑𝑞 if 𝑝 ̸= 𝑞.

29

Sample Input 1

6

4 2

1 2 2

1 4

3 4

4 2

1 2 2

1 4

1 4

5 2

1 2 2 4

1 4

3 4

11 4

1 2 3 4 5 2 4 3 5 8

1 6 7 8

1 3 5 8

11 4

1 2 3 4 5 2 4 3 5 8

1 3 5 8

7 8 9 10

10 5

1 2 3 4 2 3 3 6 4

2 4 7 8 9

1 5 6 7 8

Sample Output 1

0

1

1

0

1

1

Hint

This problem was inspired by the sliding token problem for trees introduced in [1], in which a

linear time algorithm proposed.

A node with chemical is called chemical node. Let 𝐼𝑠 and 𝐼𝑑 be the (independent) sets of

chemical nodes of 𝑇𝑠 (source network) and 𝑇𝑑 (destination network), respectively. For a set 𝐼

of chemical nodes in a network, 𝑇 , a chemical node in 𝐼 is called rigid if it cannot move at all.

We can apply the following rules to identify the rigid nodes.

1. If |𝑇 | = 1 with one chemical node 𝑢, then 𝑢 is rigid.

2. Suppose |𝑇 | ≥ 2. A chemical node 𝑢 in the chemical node set 𝐼 of 𝑇 is rigid if and only

if for every neighbor 𝑣 of 𝑢 in 𝑇 , there exists a chemical node 𝑤 in 𝐼 ∩ 𝑇 𝑣
𝑤 is rigid, where

30

𝑇 𝑣
𝑤 is the subtree containing 𝑣 and 𝑤.

The algorithm is based on the following two key points.

1. If 𝐼𝑠 and 𝐼𝑑 have different placements of rigid nodes, then the task is unfeasible.

2. Otherwise, we obtain a forest by deleting the rigid nodes together with their neighbors.

The answer is feasible as long as each tree in the forest contains the same number of

chemical nodes in 𝐼𝑠 and 𝐼𝑑.

Then, the following algorithm efficiently finds the rigid nodes iteratively.

1. Define and compute 𝑑𝑒𝑔𝐼(𝑤) = |𝑁(𝑇,𝑤) ∩ 𝐼| for all vertices 𝑤 ∈ 𝑉 (𝑇), where 𝑁(𝑇,𝑤)

denotes the neighbors of 𝑤 in 𝑇 .

2. Define and compute 𝑀 = { 𝑢 ∈ 𝐼| there exists 𝑤 ∈ 𝑁(𝑇, 𝑢) such that 𝑑𝑒𝑔𝐼(𝑤) = 1 },
that is, 𝑀 is the set of chemical nodes that can be immediately slid.

3. Repeat the following steps (i)–(iii) until 𝑀 = ∅.

(i) Select an arbitrary node 𝑢 ∈ 𝑀 , and remove it from 𝑀 and 𝐼.

(ii) Update 𝑑𝑒𝑔𝐼(𝑤) = 𝑑𝑒𝑔𝐼(𝑤)− 1 for each neighbor 𝑤 ∈ 𝑁(𝑇, 𝑢).

(iii) If 𝑑𝑒𝑔𝐼(𝑤) becomes one by the update (ii) above, then add the node 𝑢 ∈ 𝑁(𝑇,𝑤)∩𝐼

into 𝑀 .

4. Output 𝐼. Note that, since 𝑀 = ∅, all chemical nodes in 𝐼 are now (𝑇, 𝐼)-rigid.

Reference

[1] E. D. Demaine, M. L. Demaine, E. Fox-Epstein, D. A. Hoang, T. Ito, H. Ono, Y. Otachi, R.

Uehara, and T.akeshi Yamada, ’Linear-time algorithm for sliding tokens on trees’, Theoretical

Computer Science, Volume 600, Pages 132-142, 2015.

31

